
BASC-py4chan Documentation
Release 0.6.3

Antonizoon Overtwater

Nov 25, 2018

Contents

1 General Documentation 3
1.1 Tutorial . 3
1.2 Changes from the original py4chan . 4

2 API Documentation 7
2.1 basc_py4chan – 4chan Python Library . 7
2.2 basc_py4chan.Board – 4chan Boards . 8
2.3 basc_py4chan.Thread – 4chan Threads . 10
2.4 basc_py4chan.Post – 4chan Post . 11
2.5 basc_py4chan.File – 4chan File . 14

Python Module Index 17

i

ii

BASC-py4chan Documentation, Release 0.6.3

BASC-py4chan is a Python library that gives access to the 4chan API and an object-oriented way to browse and get
board and thread information quickly and easily.

Originally written by Edgeworth, the library has been adopted and extended by Bibliotheca Anonoma.

Warning: If you have an old application written to use the original py4chan, Bibliotheca Anonoma also maintains
a py-4chan fork on legacy support, only to be updated for URL changes without any new features. This fork is also
linked to the original PyPi package, and updating py-4chan using pip will give you the latest version of this fork.

However, we recommend that all users switch to the new BASC-py4chan. This module is more Pythonic, has
better support, documentation, and will be gaining new features.

The BASC-py4chan repository is located on Github, where pull requests and issues can be submitted.

Getting Help If you want help, or you have some trouble using this library, our primary IRC channel is #bibanon on
irc.rizon.net. Simply head in there and talk to dan or antonizoon. Otherwise, you can put a issue on our Github Issue
Tracker and we’ll respond as soon as we can!

Contents 1

https://github.com/e000/py-4chan
https://github.com/bibanon
https://github.com/bibanon
https://github.com/bibanon/py-4chan
https://pypi.python.org/pypi/py-4chan
https://github.com/bibanon/BASC-py4chan
http://qchat2.rizon.net/?channels=bibanon
http://qchat2.rizon.net/?channels=bibanon
https://github.com/bibanon/BASC-py4chan
https://github.com/bibanon/BASC-py4chan

BASC-py4chan Documentation, Release 0.6.3

2 Contents

CHAPTER 1

General Documentation

1.1 Tutorial

When using BASC-py4chan, it can be a bit hard to find where to begin. Here, we run through how to create and use
the various objects available in this module.

1.1.1 Boards

basc_py4chan.Board is the first thing you create when using BASC-py4chan. Everything else is created through
that class. The most basic way to create a board is as below:

board = basc_py4chan.Board('tg')

This creates a basc_py4chan.Board object that you can then use to create basc_py4chan.Thread and
basc_py4chan.Post objects.

But what sort of things does a basc_py4chan.Board object let you do?

Here’s a short code snippet of us printing out how many threads are active on a board:

board = basc_py4chan.Board('tg')
thread_ids = board.get_all_thread_ids()
str_thread_ids = [str(id) for id in thread_ids] # need to do this so str.join below
→˓works
print('There are', len(all_ids), 'active threads on /tg/:', ', '.join(str_thread_ids))

1.1.2 Threads

Listing how many threads exist on a board is all well and good, but most people want to actually get threads and do
things with them. Here, we’ll describe how to do that.

All basc_py4chan.Thread objects are created by a basc_py4chan.Board object, using one of the
basc_py4chan.Board.get_thread() methods.

3

BASC-py4chan Documentation, Release 0.6.3

For this example, we have a user ask us about “thread 1234”, and we return information about it:

thread_id = 1234
board = basc_py4chan.Board('tg')

if board.thread_exists(thread_id):
thread = board.get_thread(thread_id)

print thread information
print('Thread', thread_id)
if thread.closed:

print(' is closed')
if thread.sticky

print(' is a sticky')

information from the OP
topic = thread.topic
print(' is named:', topic.subject)
print(' and was made by:', name, email)

1.2 Changes from the original py4chan

Since Edgeworth has gone MIA, The Bibliotheca Anonoma has adopted the project and made the following improve-
ments.

1.2.1 Changes by antonizoon

• 4chan Link Structure Update - 4chan has heavily reformed it’s link structure, finally removing the strange
folder structure inherited from the Futaba Channel.

• 4chan cdn Link update - To save money on bandwidth. 4chan has changed it’s image/thumbnail/json/css
servers to a domain name with fewer characters.

• Thread Class: new filenames() function that return the filenames of all files (not thumbnails) in a thread.

• Thread Class: new thumbnames() function that return the filenames of all thumbnails in a thread.

– Post Class: new image_fname and thumbnail_fname properties, designed for Thread Class
filenames() and thumbnames().

• Actual API Documentation - Real documentation on using the py-4chan library is a must. For some people, it
is rocket science.

1.2.2 Changes by Anorov

• Anorov’s underscore_function_notation - Even I have to say that CamelCase is beginning to suck, so we’ve
adopted Anorov’s function notation for py4chan. This breaks API compatibility with the original py-4chan, but
just use find/replace to change your functions.

• Break up classes into separate files. - Makes the code much cleaner.

• Thread Class: expand() function, used to display omitted posts and images. Used by all_posts().

• Thread Class: semantic_thread_url() function, used to obtain 4chan’s new URL format, which tacks
on the thread title (obtained from slug()).

4 Chapter 1. General Documentation

http://bibanon.org/

BASC-py4chan Documentation, Release 0.6.3

• Post Class: comment() has been modified to use clean_comment_body() when returning a comment.
The raw text from the 4chan API can still be obtained from orig_comment().

– Util Class: clean_comment_body() function, which converts all HTML tags and entities within
4chan comments into human-readable text equivalents.(e.g.
 to a newline, <a href> into a raw
link)

• Board Class: _get_json() function, which dumps the raw JSON from the 4chan API.

• A whole host of new Catalog parsing functions:

– Board Class: refresh_cache() and clear_cache() - Get the latest Catalog of all threads in the
board, or clear the current cache.

– Board Class: get_threads(page) - Get a list of all threads on a certain page. (Pages are now indexed
starting from 1).

– Board Class: get_all_thread_ids() - Get a list of all thread IDs on the board.

– Board Class: get_all_threads() - Return all threads on all pages in the board.

1.2.3 Changes by Daniel Oaks

• ReadTheDocs Documentation - Splitting the documentation out to ReadTheDocs, using Sphinx to generate
nice, useful docs!

1.2. Changes from the original py4chan 5

http://readthedocs.org
http://sphinx-doc.org/

BASC-py4chan Documentation, Release 0.6.3

6 Chapter 1. General Documentation

CHAPTER 2

API Documentation

2.1 basc_py4chan – 4chan Python Library

basc_py4chan gives access to 4chan from a clean Python interface.

2.1.1 Basic Usage

4chan Python Library.

BASC-py4chan is a Python library that gives access to the 4chan API and an object-oriented way to browse and get
board and thread information quickly and easily.

2.1.2 Methods

basc_py4chan.get_boards(board_name_list, *args, **kwargs)
Given a list of boards, return basc_py4chan.Board objects.

Parameters board_name_list (list) – List of board names to get, eg: [‘b’, ‘tg’]

Returns Requested boards.

Return type dict of basc_py4chan.Board

basc_py4chan.get_all_boards(*args, **kwargs)
Returns every board on 4chan.

Returns All boards.

Return type dict of basc_py4chan.Board

7

BASC-py4chan Documentation, Release 0.6.3

2.2 basc_py4chan.Board – 4chan Boards

basc_py4chan.Board provides access to a 4chan board including checking if threads exist, retrieving appropriate
basc_py4chan.Thread objects, and returning lists of all the threads that exist on the given board.

2.2.1 Example

Here is a sample application that grabs and uses Board information:

from __future__ import print_function
import basc_py4chan

board = basc_py4chan.Board('tg')
thread_ids = board.get_all_thread_ids()
str_thread_ids = [str(id) for id in thread_ids] # need to do this so str.join below
→˓works
print('There are', len(all_ids), 'active threads on /tg/:', ', '.join(str_thread_ids))

2.2.2 Basic Usage

class basc_py4chan.Board(board_name, https=False, session=None)
Represents a 4chan board.

name
Name of this board, such as tg or k.

Type str

name
Name of the board, such as “tg” or “etc”.

Type string

title
Board title, such as “Animu and Mango”.

Type string

is_worksafe
Whether this board is worksafe.

Type bool

page_count
How many pages this board has.

Type int

threads_per_page
How many threads there are on each page.

Type int

2.2.3 Methods

Board.__init__(board_name, https=False, session=None)
Creates a basc_py4chan.Board object.

8 Chapter 2. API Documentation

BASC-py4chan Documentation, Release 0.6.3

Parameters

• board_name (string) – Name of the board, such as “tg” or “etc”.

• https (bool) – Whether to use a secure connection to 4chan.

• session – Existing requests.session object to use instead of our current one.

Board.thread_exists(thread_id)
Check if a thread exists or has 404’d.

Parameters thread_id (int) – Thread ID

Returns Whether the given thread exists on this board.

Return type bool

Board.get_thread(thread_id, update_if_cached=True, raise_404=False)
Get a thread from 4chan via 4chan API.

Parameters

• thread_id (int) – Thread ID

• update_if_cached (bool) – Whether the thread should be updated if it’s al-
ready in our cache

• raise_404 (bool) – Raise an Exception if thread has 404’d

Returns Thread object

Return type basc_py4chan.Thread

Board.get_threads(page=1)
Returns all threads on a certain page.

Gets a list of Thread objects for every thread on the given page. If a thread is already in our cache,
the cached version is returned and thread.want_update is set to True on the specific thread object.

Pages on 4chan are indexed from 1 onwards.

Parameters page (int) – Page to request threads for. Defaults to the first page.

Returns List of Thread objects representing the threads on the given page.

Return type list of basc_py4chan.Thread

Board.get_all_threads(expand=False)
Return every thread on this board.

If not expanded, result is same as get_threads run across all board pages, with last 3-5 replies in-
cluded.

Uses the catalog when not expanding, and uses the flat thread ID listing at /{board}/threads.json
when expanding for more efficient resource usage.

If expanded, all data of all threads is returned with no omitted posts.

Parameters expand (bool) – Whether to download every single post of every thread.
If enabled, this option can be very slow and bandwidth-intensive.

Returns List of Thread objects representing every thread on this board.

Return type list of basc_py4chan.Thread

Board.get_all_thread_ids()
Return the ID of every thread on this board.

2.2. basc_py4chan.Board – 4chan Boards 9

BASC-py4chan Documentation, Release 0.6.3

Returns List of IDs of every thread on this board.

Return type list of ints

Board.refresh_cache(if_want_update=False)
Update all threads currently stored in our cache.

Board.clear_cache()
Remove everything currently stored in our cache.

2.3 basc_py4chan.Thread – 4chan Threads

basc_py4chan.Thread allows for standard access to a 4chan thread, including listing all the posts in the thread,
information such as whether the thread is locked and stickied, and lists of attached file URLs or thumbnails.

2.3.1 Basic Usage

class basc_py4chan.Thread(board, id)
Represents a 4chan thread.

closed
Whether the thread has been closed.

Type bool

sticky
Whether this thread is a ‘sticky’.

Type bool

archived
Whether the thread has been archived.

Type bool

bumplimit
Whether the thread has hit the bump limit.

Type bool

imagelimit
Whether the thread has hit the image limit.

Type bool

custom_spoiler
Number of custom spoilers in the thread (if the board supports it)

Type int

topic
Topic post of the thread, the OP.

Type basc_py4chan.Post

posts
List of all posts in the thread, including the OP.

Type list of basc_py4chan.Post

10 Chapter 2. API Documentation

BASC-py4chan Documentation, Release 0.6.3

all_posts
List of all posts in the thread, including the OP and any omitted posts.

Type list of basc_py4chan.Post

url
URL of the thread, not including semantic slug.

Type string

semantic_url
URL of the thread, with the semantic slug.

Type string

semantic_slug
The ‘pretty URL slug’ assigned to this thread by 4chan.

Type string

2.3.2 Methods

Thread objects are not instantiated directly, but instead through the appropriate basc_py4chan.Board
methods such as basc_py4chan.Board.get_thread().

Thread.files()
Returns the URLs of all files attached to posts in the thread.

Thread.thumbs()
Returns the URLs of all thumbnails in the thread.

Thread.filenames()
Returns the filenames of all files attached to posts in the thread.

Thread.thumbnames()
Returns the filenames of all thumbnails in the thread.

Thread.update(force=False)
Fetch new posts from the server.

Parameters force (bool) – Force a thread update, even if thread has 404’d.

Returns How many new posts have been fetched.

Return type int

Thread.expand()
If there are omitted posts, update to include all posts.

2.4 basc_py4chan.Post – 4chan Post

basc_py4chan.Post allows for standard access to a 4chan post.

2.4.1 Example

Here is a sample application that grabs and prints basc_py4chan.Thread and basc_py4chan.Post informa-
tion:

2.4. basc_py4chan.Post – 4chan Post 11

BASC-py4chan Documentation, Release 0.6.3

credits to Anarov for improved example
from __future__ import print_function
import basc_py4chan

get the board we want
board = basc_py4chan.Board('v')

select the first thread on the board
all_thread_ids = board.get_all_thread_ids()
first_thread_id = all_thread_ids[0]
thread = board.get_thread(first_thread_id)

print thread information
print(thread)
print('Sticky?', thread.sticky)
print('Closed?', thread.closed)
print('Replies:', len(thread.replies))

print topic post information
topic = thread.topic
print('Topic Repr', topic)
print('Postnumber', topic.post_number)
print('Timestamp', topic.timestamp)
print('Datetime', repr(topic.datetime))
print('Subject', topic.subject)
print('Comment', topic.comment)

file information
for f in first_thread.file_objects():

print('Filename', f.filename)
print(' Filemd5hex', f.file_md5_hex)
print(' Fileurl', f.file_url)
print(' Thumbnailurl', f.thumbnail_url)
print()

2.4.2 Basic Usage

class basc_py4chan.Post(thread, data)
Represents a 4chan post.

post_id
ID of this post. Eg: 123123123, 456456456.

Type int

poster_id
Poster ID.

Type int

name
Poster’s name.

Type string

email
Poster’s email.

Type string

12 Chapter 2. API Documentation

BASC-py4chan Documentation, Release 0.6.3

tripcode
Poster’s tripcode.

Type string

subject
Subject of this post.

Type string

comment
This comment, with the <wbr> tag removed.

Type string

html_comment
Original, direct HTML of this comment.

Type string

text_comment
Plaintext version of this comment.

Type string

is_op
Whether this is the OP (first post of the thread).

Type bool

spoiler
Whether the attached file is spoiled.

Type bool

timestamp
Unix timestamp for this post.

Type int

datetime
Datetime time of this post.

Type datetime.datetime

first_file
The File object associated with this post.

Type py8chan.File

has_file
Whether this post has a file attached to it.

Type bool

url
URL of this post.

Type string

semantic_url
URL of this post, with the thread’s ‘semantic’ component.

Type string

semantic_slug
This post’s ‘semantic slug’.

2.4. basc_py4chan.Post – 4chan Post 13

BASC-py4chan Documentation, Release 0.6.3

Type string

Post objects are not instantiated directly, but through a basc_py4chan.Thread object with an attribute like
basc_py4chan.Thread.all_posts.

2.5 basc_py4chan.File – 4chan File

basc_py4chan.Post allows for standard access to a 4chan file. This provides programs with a complete File
object that contains all metadata about the 4chan file, and makes migration easy if 4chan ever makes multiple files in
one Post possible (as 8chan does).

2.5.1 Basic Usage

class basc_py4chan.File(post, data)
Represents File objects and their thumbnails. Constructor:

post (py4chan.Post) - parent Post object. data (dict) - The post or extra_files dict from the 8chan API.

file_md5
MD5 hash of the file attached to this post.

Type string

file_md5_hex
Hex-encoded MD5 hash of the file attached to this post.

Type string

filename
Name of the file attached to this post.

Type string

filename_original
Original name of the file attached to this post.

Type string

file_url
URL of the file attached to this post.

Type string

file_extension
Extension of the file attached to this post. Eg: png, webm, etc.

Type string

file_size
Size of the file attached to this post.

Type int

file_width
Width of the file attached to this post.

Type int

file_height
Height of the file attached to this post.

14 Chapter 2. API Documentation

BASC-py4chan Documentation, Release 0.6.3

Type int

file_deleted
Whether the file attached to this post was deleted after being posted.

Type bool

thumbnail_width
Width of the thumbnail attached to this post.

Type int

thumbnail_height
Height of the thumbnail attached to this post.

Type int

thumbnail_fname
Filename of the thumbnail attached to this post.

Type string

thumbnail_url
URL of the thumbnail attached to this post.

Type string

File objects are not instantiated directly, but through a basc_py4chan.File object with an attribute like
basc_py4chan.Post.first_file.

2.5. basc_py4chan.File – 4chan File 15

BASC-py4chan Documentation, Release 0.6.3

16 Chapter 2. API Documentation

Python Module Index

b
basc_py4chan, 7

17

BASC-py4chan Documentation, Release 0.6.3

18 Python Module Index

Index

Symbols
__init__() (basc_py4chan.Board method), 8

A
all_posts (basc_py4chan.Thread attribute), 10
archived (basc_py4chan.Thread attribute), 10

B
basc_py4chan (module), 7
Board (class in basc_py4chan), 8
bumplimit (basc_py4chan.Thread attribute), 10

C
clear_cache() (basc_py4chan.Board method), 10
closed (basc_py4chan.Thread attribute), 10
comment (basc_py4chan.Post attribute), 13
custom_spoiler (basc_py4chan.Thread attribute), 10

D
datetime (basc_py4chan.Post attribute), 13

E
email (basc_py4chan.Post attribute), 12
expand() (basc_py4chan.Thread method), 11

F
File (class in basc_py4chan), 14
file_deleted (basc_py4chan.File attribute), 15
file_extension (basc_py4chan.File attribute), 14
file_height (basc_py4chan.File attribute), 14
file_md5 (basc_py4chan.File attribute), 14
file_md5_hex (basc_py4chan.File attribute), 14
file_size (basc_py4chan.File attribute), 14
file_url (basc_py4chan.File attribute), 14
file_width (basc_py4chan.File attribute), 14
filename (basc_py4chan.File attribute), 14
filename_original (basc_py4chan.File attribute), 14
filenames() (basc_py4chan.Thread method), 11
files() (basc_py4chan.Thread method), 11

first_file (basc_py4chan.Post attribute), 13

G
get_all_boards() (in module basc_py4chan), 7
get_all_thread_ids() (basc_py4chan.Board method), 9
get_all_threads() (basc_py4chan.Board method), 9
get_boards() (in module basc_py4chan), 7
get_thread() (basc_py4chan.Board method), 9
get_threads() (basc_py4chan.Board method), 9

H
has_file (basc_py4chan.Post attribute), 13
html_comment (basc_py4chan.Post attribute), 13

I
imagelimit (basc_py4chan.Thread attribute), 10
is_op (basc_py4chan.Post attribute), 13
is_worksafe (basc_py4chan.Board attribute), 8

N
name (basc_py4chan.Board attribute), 8
name (basc_py4chan.Post attribute), 12

P
page_count (basc_py4chan.Board attribute), 8
Post (class in basc_py4chan), 12
post_id (basc_py4chan.Post attribute), 12
poster_id (basc_py4chan.Post attribute), 12
posts (basc_py4chan.Thread attribute), 10

R
refresh_cache() (basc_py4chan.Board method), 10

S
semantic_slug (basc_py4chan.Post attribute), 13
semantic_slug (basc_py4chan.Thread attribute), 11
semantic_url (basc_py4chan.Post attribute), 13
semantic_url (basc_py4chan.Thread attribute), 11
spoiler (basc_py4chan.Post attribute), 13

19

BASC-py4chan Documentation, Release 0.6.3

sticky (basc_py4chan.Thread attribute), 10
subject (basc_py4chan.Post attribute), 13

T
text_comment (basc_py4chan.Post attribute), 13
Thread (class in basc_py4chan), 10
thread_exists() (basc_py4chan.Board method), 9
threads_per_page (basc_py4chan.Board attribute), 8
thumbnail_fname (basc_py4chan.File attribute), 15
thumbnail_height (basc_py4chan.File attribute), 15
thumbnail_url (basc_py4chan.File attribute), 15
thumbnail_width (basc_py4chan.File attribute), 15
thumbnames() (basc_py4chan.Thread method), 11
thumbs() (basc_py4chan.Thread method), 11
timestamp (basc_py4chan.Post attribute), 13
title (basc_py4chan.Board attribute), 8
topic (basc_py4chan.Thread attribute), 10
tripcode (basc_py4chan.Post attribute), 12

U
update() (basc_py4chan.Thread method), 11
url (basc_py4chan.Post attribute), 13
url (basc_py4chan.Thread attribute), 11

20 Index

	General Documentation
	Tutorial
	Changes from the original py4chan

	API Documentation
	basc_py4chan – 4chan Python Library
	basc_py4chan.Board – 4chan Boards
	basc_py4chan.Thread – 4chan Threads
	basc_py4chan.Post – 4chan Post
	basc_py4chan.File – 4chan File

	Python Module Index

